MODULE 7: RADICAL BASICS

"THE DIFFERENCE BETWEEN WHO YOU ARE AND WHO YOU WANT TO BE IS WHAT YOU DO."

6.1 INTRODUCTION TO	SQUARE ROOTS				
Definition of Square Root of X:					
√:	(square root symbol)				
What is underneath t	the radical is called the				
	is the opposite of square rooting.				
	is the opposite of squaring.				
Know your perfect sq	uares up to 13, [113]				
1 ² =	8 ² =				
2 ² =	9 ² =				
3 ² =	10 ² =				
4 ² =	11 ² =				
5 ² =	12 ² =				
6 ² =	13 ² =				

 $0^2 =$

 $7^2 =$

Square Roots of Variable Expressions

Square root of a variable: Divide the exponent by _____.

However many times 2 goes into the exponent is the value of the exponent for the variable _____ the radical. The remainder is the value of the exponent left _____ the radical.

Examples: Simplify

$$\sqrt{x^2} =$$

$$\sqrt{\chi^{20}} =$$

$$\sqrt{x^{14}} =$$

$$\sqrt{\chi^3} =$$

$$\sqrt{x^{21}} =$$

$$\sqrt{x^{15}} =$$

If there are coefficients (numbers) inside the radical with the variables do the square root of each of them separately.

Numbers _____. Variables _____.

Examples: Simplify

$$\sqrt{49x^{18}} =$$

$$\sqrt{36x^7}$$
 =

$$\sqrt{25x^{17}} =$$

$$\sqrt{y^{10}x^{28}} =$$

$$\sqrt{81x^8y^2z} =$$

$$\sqrt{169x^3y^{11}z^0} =$$

Pythagorean Theorem

Pythagorean theorem: _____ + ____ = ____

Used to find the sides of a ______.

Shorter sides (a,b): _____.Longest side (c):_____

Example: Solve for the missing side.

Example: Solve for the missing side.

Example: Solve for the missing side.

Distance Formula
The distance formula is:
Used to find the distance between
Example: Find the distance between (2, -7) and (-4,1)
Example: Find the distance between (-2, 9) and (1,5)
Example: Find the distance between $(-3, 5)$ and $(-6,-2)$

Simplify s	quare root	s using two methods	: outside√inside
1. Factor ra	dicand into p	orime factors and find _	
For every p	air found, th	at number comes	of the radical.
Example:	Simplify	$\sqrt{18}$	
2 Factor 20	ملمة لمسمدال	. faakan ingluding a	
		a factors including a	
	·	root comes of	
		ft over stay	of the radical.
Example:	Simplify	√ 18	
*Note: Use	a combinatio	n of these two methods	5.
Example:	Simplify	$\sqrt{200}$	
Example:	Simplify	$\sqrt{32}$	
	values t	aken out of the radical	, to values outside
Example:	Simplify	$5\sqrt{20}$	

Example: Simplify $\sqrt{12x^5}$

Example: Simplify $5\sqrt{45x^7y^{12}}$

Example: Simplify $3x^2\sqrt{15x^6y^2}$

Example: Simplify $2x^2y\sqrt{50x^{14}y^5z}$

Quotient Rule

Square root numerator/denominator separately $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Simplify $\sqrt{\frac{9}{16}} =$ Simplify $\sqrt{\frac{101}{25}} =$

Homework Checklist

☐ Section 6.1 & 6.2 Square Root Basics